N-(QUINUCLIDIN-3-YL)-1,8-NAPHTHALIMIDES WITH 5-HT₃ RECEPTOR ANTAGONIST AND 5-HT₄ RECEPTOR AGONIST PROPERTIES

R.D. Clark,* K.K. Weinhardt, J. Berger, C.-H. Lee, E. Leung, E.H.F. Wong, W.L. Smith and R.M. Eglen

Syntex Research, Palo Alto, CA 94304

(Received in USA 26 March 1993)

Abstract: The enantiomers of N-(quinuclidin-3-yl)-4-amino-3-chloro-1,8-naphthalimide (3) were examined for interactions at 5-HT₃ and 5-HT₄ receptors. (R)-3 was found to be a potent 5-HT₃ receptor antagonist while (S)-3 was found to be a 5-HT₄ receptor agonist with reduced 5-HT₃ receptor affinity.

The 5-HT₄ receptor represents the fourth distinct class of serotonin receptor to be characterized¹ and has been identified in central nervous system². gastrointestinal³, and cardiac⁴ tissues. In the search for agonists and antagonists of this receptor it was noted that several high-affinity 5-HT₃ receptor antagonists displayed weak interaction with the 5-HT₄ receptor. For example, tropisetron (ICS 204-930) was found to be a weak 5-HT₄ receptor antagonist¹ and zacopride (1) was shown to be a weak 5-HT₄ receptor agonist.⁵ Recently, a number of more selective and potent 5-HT₄ receptor agonists⁶-8 and antagonistsゅ¹-15 have been reported. While exploring the structure-activity relationships among hybrid structures of zacopride (1) and the high affinity 5-HT₃ receptor antagonist 2¹6,17, we prepared the enantiomers of the *N*-(quinuclidin-3-yl)-1,8-naphthalimide 3.¹8,¹9 In this communication, we report that both (*S*)-3 and (*R*)-3 have 5-HT₃ receptor antagonist and 5-HT₄ receptor agonist properties, and that there is a reversal of the enantioselectivity of the isomers in the interactions with these receptors.

The enantiomers of 3 were prepared in three steps from 4-nitro-1,8-naphthalic anhydride (4) as described in Scheme 1. Affinity at the 5-HT₃ receptor was determined in rat cerebro cortical membranes by measurement of displacement of [3H]quipazine.²⁰ In vivo 5-HT₃ receptor antagonist activity was determined by antagonism of the von Bezold-Jarisch (B-J) reflex in anesthetized rats.²¹ 5-HT₄ receptor agonist (or antagonist) activity was determined in the rat esophageal muscularis mucosae preparation.²² Results of the 5-HT₃ and 5-HT₄ receptor assays are presented in Table 1.

An initial interesting finding was that (R)-3 had ca. 10-fold greater 5-HT₃ receptor affinity than (S)-3.19 This was in contrast to the higher 5-HT₃ receptor affinity of the (S)-enantiomers of zacopride (1) (Table 1) and compound (S)-17 The in vivo 5-HT₃ receptor antagonist activity of (R)-3 was also significantly greater than that of (S)-3 in the B-J assay. When tested for 5-HT₄ receptor activity, (R)-3 was found to be a weak agonist in the esophageal preparation. However, (S)-3 was found to be a potent agonist in this system. The same enantioselectivity of 5-HT₄ receptor agonist activity was observed for the zacopride enantiomers in the esophageal preparation where (S)-zacopride exhibited ca. 10-fold greater agonist activity than (R)-zacopride.

Table 1. Activity at 5-HT₃ and 5-HT₄ Receptors

lable 1. Activity at 5-H13 and 5-H14 Receptors				
	5-HT ₃ Receptor		5-HT ₄ Receptor	
	Bindinga	Inhibition of	Agonist activity	
	pK _i + SEM	B-J Reflexb	esophagusc	
compound	<u> </u>	ug/kg iv (95% CL)	pEC50 (95% CL) i.a.d	
(S)- 3	8.0 ± 0.1	77 (47-128)	7.9 (7.7-8.4)	0.8
(R)- 3	9.1 ± 0.1	4.5 (3.0-6.8)	<6	-
5	7.4 ± 0.1	288 (195-417)	7.5 (7.3-7.6)	0.9
(S)-zacopride	9.6 ± 0.1	nte	7.2 (7.1-7.2)	0.9
(R)-zacopride	8.5 ± 0.1	nt	6.3 (6.1-6.5)	0.9
ondansetron	8.5 ± 0.2	2.6 (1.5-4.7)	nt	
5-HT	-	-	8.2 (8.1-8.3)	1.0

^aDetermined in rat cerebro cortical membranes using [³H]quipazine. ^bIn the anesthetized rat. ^cRelaxation of carbachol contracted rat esophageal muscularis mucosae. ^dIntrinsic activity relative to 5-HT. ^enot tested.

Additional SAR work around structure 3 produced the 4-piperidinyl analogue 5 which retained the 5- $\mathrm{HT_4}$ agonist properties of (S)-3 but had less affinity for the 5- $\mathrm{HT_3}$ receptor. Unfortunately, further development of this series was precluded by adverse toxicological findings. However, results of animal behavioral studies with these agents offer information regarding serotonergic mechanisms in the CNS. In addition, SAR information gained has allowed preparation of more potent and selective 5- $\mathrm{HT_4}$ agonists. Results of these studies will be presented in due course.

References and Notes

- 1. Bockaert, J.; Fozard, J.R.: Dumuis, A.; Clarke, D.E. Trends Pharmacol. Sci. 1992, 13, 141.
- 2. Dumuis, A.; Bouhelal, R.; Sebben, M.; Cory, R.; Bockaert, J. *Mol. Pharmacol.* 1988, 34, 880.
- 3. Craig, D.A.; Clarke, D.E.; J. Pharmacol. Exp. Ther. 1990, 252, 1378.
- 4. Villalon, C.M.; den Boer, M.O.; Heiligers, J.P.C.; Saxena, P.R. Br. J. Pharmacol. 1990, 100, 665.
- 5. Dumuis, A.; Sebben, M.; Bockaert, J. Naunyn-Schmiedeberg's Arch. Pharmacol. 1989, 340, 403.
- 6. Turconi, M.; Schiantarelli, P.; Borsini, F.; Rizzi, C.A.; Ladinsky, H.; Donetti, A. *Drugs of the Future* 1991, *16*, 1011.
- 7. Flynn, D.L.; Zabrowski, D.L.; Becker, D.P.; Nosal, R.; Villamil, C.I.; Gullikson, G.W.; Moummi, C.; Yang, D.-C. J. Med. Chem. 1992, 35, 1489.
- 8. Blum, E.; Buchheit, K.H.; Ruescher, H.H.; Gamse, R.; Kloeppner, E.; Meigel, H.; Papageorgiou, C.; Waelchi, R.; Revesz, L. *BioMed. Chem. Lett.* **1992**, , 46l.
- 9. Buchheit, K.H.; Gamse, R.; Pfannkuche, H.-J. Eur. J. Pharmacol. 1991, 200, 373.
- 10. Kaumann, A.J.; Medhurst, A.; Boyland, P.; Vimal, M.; Young, R.C. Proc. 2nd Int. Symp. Serotonin, Houston, Abst. p44, Sept. 1992.
- 11. Krushinski, J.H.; Susemichel, A.; Robertson, D.W.; Cohen, M.L. Amer. Chem. Soc., Division Med. Chem., 203th National Meeting, Abst. no. 118, 1992.
- 12. Moormann, A.E.; Yang, D.-C.; Gullickson, G.W.; Flynn, D.L. Amer. Chem. Soc., Division Med. Chem., 204th National Meeting, Abst. no. 88, 1992.
- 13. Eglen, R.M.; Bonhaus, D.W.; Clark, R.; Hegde, S.; Leung, E.; Whiting, R.L. Br. J. Pharmacol. in press.
- 14. Kaumann, A.J.; King, F.D.; Young, R.C. BioMed. Chem. Lett. 1992, 2, 419.
- 15. Grossman, C.J.; Kilpatrick, G.J.; Bunce, K.T.; Oxford, A.W.; Gale, J.D.; Whitehead, J.F.; Humphrey, P.P.A. Proc. 2nd Int. Symp. Serotonin, Houston, Abst. p31, Sept. 1992.
- 16. Wong, E.H.F.; Wu, I.; Eglen, R.M.; Whiting, R.L. Br. J. Pharmacol. 1992, 105, 33P.
- 17. Clark, R.D. et. al. *J. Med. Chem.* in press. The p K_i of **2** at the 5-HT₃ receptor was 9.8 while the (R)-enantiomer had a p K_i of 8.1.
- 18. Berger, J.; Clark, R.D.; Eglen, R.M.; Smith, W.L.; Weinhardt, K.K. U.S. Patent 5,202,318, May 13, 1993.
- 19. After completion of this work, the 5-HT₃ receptor antagonist properties of the des-chloro analogues of the enantiomers of 3 were reported and were in close agreement with values reported herein: Langlois, M.; Soulier, J.L.; Bremont, B.; Shen, S.; Rampillon, V.; Giudice, A. *BioMed. Chem. Lett.* 1992, 691.
- 20. Peroutka, S.J.; Hamik, A. Eur. J. Pharmacol. 1988, 148, 297.
- 21. Richardson, B.P.; Engel, G.; Donatsch, P.; Stadler, P.A. Nature 1985, 316, 126.
- 22. Baxter, G.S.; Craig, D.A.; Clarke, D.E. Naunyn-Schmeideberg's Arch. Pharmacol. 1991, 343, 439.